STUDY FINDS LINK BETWEEN GMO’s AND CURRENT HEALTH CARE CRISIS
Are pesticide resistant seeds responsible for cell signaling malfunctions?

The August 14th, 2010 issue of Science News, “Separating wheat from chaff in celiac disease”, reported that a research team led by gastroenterologist Robert Anderson of the Walter and Eliza Hall Institute of Medical Research in Parkville, Australia, had identified specific triggers (gluten sensitivities) associated with celiac disease.

These following observations are based on the mathematical matrix of BioAcoustic Biology developed over the last twenty years by the Sound Health Research Center located in Albany, Ohio, USA. The system allows for the evaluation of any aspect of the body and biochemistry in terms of numeric mathways, aka Frequency Equivalents™.

Research efforts at the Institute of BioAcoustic Biology often evaluate clients who exhibit gluten sensitivity along with a myriad of associated diseases. In light of this new information it was imperative that this data be added to their analytical software databases. The three proteins identified by the Anderson study were translated into BioAcoustic bio-frequency biomarkers*. The resulting numeric matrix showed that the metabolic pathways influenced by these proteins were linked to nearly all systems of the human body; causing immune distortion, acute cellular inflammation and disruptions in cell communication.

The original article listed three proteins, w-5 gliadin (wheat), g-3 hordein (barley) and g secalins (rye) that were implicated in the production of specific anti-gliadin antibody reactions. These proteins, which have been proven to be responsible for allergic reactions, are associated with grain glutens from which they are derived.

Patent records indicated many grains seeds being produced for market are GMO’s developed and patented by a multinational agricultural biotech conglomerate that is attempting to make their grains

This may be one of the decade’s most important “connections” between food and genetics. By showing the frequency relationships among substances normally found in healthy people, you have confirmed that the potential for GMO harm is very Real.

Ralph Fucetola
www.HealthFreedomPortal.org
impervious to weed killers. Could this confirm that the present day epidemic of grain related sensitivities/allergies stem from laboratory modified seeds?

These distorted, allergy causing, “engineered” grains are being used to create foods that we eat everyday; bread, cereals, chips, crackers, pastry, seasonings, even some packaged chip products contain gluten. BioAcoustic Biology matrix correlations revealed how thoroughly our health is being negatively influenced by these genetically modified foods (GMO’s).

Further investigation revealed that the engineered grains contain two substitutions that distorted the way the body processes two sulfur rich amino acids: proline and glutamine. Disturbances in these amino acid substitutions result in the impediment of the methylation of these two essential nutrients.

BioAcoustically speaking, Glutamine distortions seem to be the most destructive. The enzyme required to utilize glutamine is glutamate decarboxylase (GAD). Glutamate is a key molecule in cellular metabolism and the most abundant excitatory neurotransmitter in a vertebrate nervous system.

In mammals, GAD exists in two isoforms encoded by two different genes - Gad1 and Gad2. GAD1 and GAD2 are expressed in the brain where GABA is used as a neurotransmitter; GAD2 is also expressed in the pancreas.

This led to an evaluation of the GAD genomes and what happens when these genes are activated:

Glutamate decarboxylase aka **glutamic acid decarboxylase** (GAD) is an enzyme that catalyzes the decarboxylation (part of the process of breaking down for use by the body) of glutamate to GABA (gamma aminobutyric acid) and CO₂.

GABA is a natural tranquilizer and an important inhibitory neurotransmitter that helps regulate neuron activity and the body’s nanosensors. Starting with the GAD enzyme response and moving toward GABA in conjunction with the active form of B6 (PLP), the nanotransmitters of the body are created and regulated. The movement of electrical energy and hence magnetic potential within the body are controlled by these nanotransmitters.

GAD uses PLP (pyridoxal 50‐phosphate) as a cofactor. PLP was granted a patent by the US government patent office to the Canadian company, Medicure. PLP is now under the control of the pharmaceutical industry and its lack is often associated with blood clotting distortions, migraines, neural disorders and seizures.

Nanotransmitters produced in conjunction with GAD metabolism show direct associations with a multitude of diseases: diabetes, autism, arthritis, Parkinson’s, ALS, Multiple Sclerosis, joint pain and deterioration, auditory disorders, Celiac Disease, Crohn’s, Irritable Bowel syndrome, diverticulitis, schizophrenia, bipolar and anxiety disorders, aspartame sensitivity, MSG reactions, Lupus, Fibromyalgia, depression, seizures, brain signaling, the use of calcitonin (cancer related), histidine function (seasonal allergies), cellular inflammation and vaccination reactions.

Of particular importance is GAD’s involvement with cancer via Calcitonin, a 32–amino-acid peptide/hormone that participates in calcium and phosphorus metabolism. BioAcoustically speaking, calcitonin is a major player in the role of how the body handles any cancer threat.
Parkinson’s is an incurable, debilitating disease that also shows GAD involvement. The activity of glutamic acid decarboxylase (GAD), the enzyme involved in formation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), was studied in autopsy brain samples from six Parkinson's patients and 13 controls. The activity of GAD was significantly reduced in brain samples of patients with Parkinson’s disease, being about 50 percent of that in controls. Moreover, levodopa treatment showed a tendency to increase the activity of GAD. The results suggest the involvement of GABA neurons in Parkinson’s disease.

A search of the GAD literature stated that acetylcholine, γ-aminobutyric acid, dopamine, calcitonin gene-related peptides, choline acetyltransferase and enkephalins are involved with the metabolism of GAD. It would be important to include these biochemicals when testing subjects for GAD presence and methylation.

Glutamate is the same Frequency Equivalent* as aspartame and is part of MSG (mono-sodium glutamate). James Oschman in his publication, *Energy Medicine*, states that cells emit frequency-based signals as a request for needed biochemicals to gather at the site where they are needed. Since Glutamate and Aspartame are the same frequency, this may explain why Aspartame has been implicated in so many muscle and joint disorders.

MSG is also used as a stabilizer in some vaccines. This could account for the reported increase in autism associated vaccination damage.

“This may be one of the decade’s most important ‘connections’ between food and genetics. By showing the frequency relationships among substances normally found in healthy people, you have confirmed that the potential for GMO harm is very real,” states Ralph Fucetola, JD and health freedom advocate.

Sharry Edwards, the recognized pioneer of this emerging technology states, “I expect this information will be the impetus that opens the world to the potential of BioAcoustic Biology and the hope of allowing access to Self Health care via easy-to-use software; even after the appearance of a disease process”.

From the original Science News article:

“Three protein fragments are looking like the guilty parties in celiac disease, an intestinal ailment that affects as many as one in 133 people in the United States. These partial proteins, or peptides, are the part of gluten in wheat, rye and barley that triggers the immune systems of celiac patients, damaging the small intestine. An Australian research team reports the new findings in the July 21 *Science Translational Medicine*.”

“This is an impressive and very comprehensive study,” says immunologist Ludvig Sollid of the University of Oslo. “The authors find that most celiac patients make a response to these three gluten peptides.”

Questions: Are GMO producers aware of the damage to health that is being caused? Shouldn’t those with cell signaling issues be warned about ingesting these glutens? Why are GMO producers and the US government boldly attempting to prevent package warnings that would notify people that they were eating GMO products? Is it greed, ignorance or a misguided attempt to improve our food supply?
that is in fact poisoning our food, our population, and our genetic pool? Is this assault on our food supply intentionally creating a future that will keep us ill and medication dependent?

For further information about this topic, or to schedule an interview with Sharry Edwards, please call 740-698-9119 – M-F, EST or write to media@vocalprofiling.com

References available by request

* all issues expressed in terms of Frequency Equivalent™ (a “term of use” for BioAcoustic Biology) a numeric representation of a person, place, thing or emotion.

Reference articles/abstracts/Links

Anti-GAD-positive patients with type 1 diabetes mellitus have higher prevalence of autoimmune thyroiditis than anti-GAD-negative patients with type 1 and type 2 diabetes mellitus. Bárová H, Perusicová J, Hill M, Sterzl J, Vondra K, Masek Z. Third Department of Medicine, General University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic

Arch Neurol. 2004;61:902-904.GAD and Lupus/Fibromyalgia

Archives of Neurology – Vol 61, No 6, June 2004. Anti–Glutamic Acid Decarboxylase Antibodies in the Serum and Cerebrospinal Fluid of Patients With Stiff-Person Syndrome. Goran Rakocevic, MD; Raghavanpillai Raju, PhD; Marinos C. Dalakas, MD.

Autoantibodies in patients with gut motility disorders and enteric neuropathy. Törnblom H, Lang B, Clover L, Knowles CH, Vincent A, Lindberg G. Karolinska Institutet, Department of Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden

Biochemical Medicine. Volume 21, Issue 1, February 1979, Pages 22-32

Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Jane Yip, Jean-Jacques Soghomonian and Gene J. Blatt

Diabetes mellitus decreases the expression of calcitonin-gene related peptide, gamma-amino butyric acid and glutamic acid decarboxylase in human pancreatic islet cells. Al-Salam S, Hameed R, Parvez HS, Adeghate E

GAD and Irritable Bowel Syndrome. Scand J Gastroenterol. 2007 Nov;42(11):1289-93

International Archives of Allergy and Immunology – Vol 152, No 2, 2010: The Diabetic Antigen Glutamic Acid Decarboxylase (GAD 65) in the Human Peripheral Blood. G.P. Tilz, J. Dausset, M. Wiltgen

Lupus. 2005;14(6):486-8. Anti-glutamic acid decarboxylase antibodies in a patient with systemic lupus erythematosus and fibromyalgia symptoms. Taylor-Gjevre RM, Gjevre JA. Division of Rheumatology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada.
Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Hettema JM, An SS, Neale MC, Bukszar J, van den Oord EJ, Kendler KS, Chen X. Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298-0126, USA

The Salk Institute, San Diego, CA U.S.A. Multiple Sclerosis Research Clinic, Department of Neurology, UCLA School of Medicine, Los Angeles, CA U.S.A. <http://www.sciencedirect.com>

Possible implication of an inosinetrifosphosphate metabolic error and glutamic acid decarboxylase in paranoid schizophrenia. Bernardo S. Vanderheiden. Eastern Pennsylvania Psychiatric Institute, Henry Avenue and Abbotsford Road, Philadelphia, Pennsylvania, 19129 USA, Department of Psychiatry and Human Behavior, Jefferson Medical College, Philadelphia, Pennsylvania 19107 USA

Role of Immunomodulation Therapy in Autoimmune Diabetes, Johnny Ludvigsson, M.D., Ph.D. for the Linköping Diabetes Immune Intervention Study Group, Division of Pediatrics and Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, Sweden
